Fault detection method for nonlinear systems based on probabilistic neural network filtering
نویسندگان
چکیده
A fault detection method for nonlinear systems, which is based on Probabilistic Neural Network Filtering (PNNF), is presented. PNNF limits the maximum estimation error of the asymptotic Bayes optimal result and describes the tracking process with an expression. On the basis of these properties of PNNF and the statistical characteristics of the noise of the system, a fault threshold can be better calculated, especially for the tracking process corresponding to a strong disturbance. According to the threshold, the fault can be detected by evaluating the residuals. Also, for some special cases when a fault is potential but the system is in steady state, which causes the information for fault detection may be insufficient and a group of disturbances are artificially input with definite amplitudes, so that the result of detection can be enhanced by comparing the real with the expected tracking processes of the filter. Examples are given to demonstrate the method of fault detection based on PNNF.
منابع مشابه
Designing of a New Transformer Ground Differential Relay Based on Probabilistic Neural Network
Low- impedance transformer ground differential relay is a part of power transformer protection system that is employed for detecting the internal earth faults. This is a fast and sensitive relay, but during some external faults and inrush current conditions, may be exposed to maloperation due to current transformer (CT) saturation. In this paper, a new intelligent transformer ground differentia...
متن کاملDeveloping A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults
Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...
متن کاملStator Turn-to-Turn Fault Detection of Induction Motor by Non-Invasive Method Using Generalized Regression Neural Network
Condition monitoring and protection methods based on the analysis of the machine's current are widely used according to non-invasive characteristics of current transformers. It should be noted that, these sensors are installed by default in the machine control center. On the other hand, condition monitoring based on mathematical methods has been proposed in literature. However, they are model b...
متن کاملUAV attitude Sensor Fault Detection Based On Fuzzy Logic and by Neural Network Model Identification
Fault detection has always been important in aviation systems to prevent many accidents. This process is possible in different ways. In this paper, we first identify the longitudinal axis plane model using neural network approach. Then based on the obtained model and using fuzzy logic, the aircraft status sensor fault detection unit was designed. The simulation results show that the fault detec...
متن کاملFault Detection Based on Type 2 Fuzzy system for Single-Rod Electrohydraulic Actuator
Electro-hydraulic systems with regards to the their specific features and applications among other industrial systems including mechanical, electrical and pneumatic systems, have been widely taken into consideration by the scientists and researchers. Due to the fact that the electro-hydraulic system is inherently a nonlinear system, has some problems such as signals saturation, nonlinear effici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Systems Science
دوره 33 شماره
صفحات -
تاریخ انتشار 2002